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Abstract. Recently, transmitting diverse signals in different cores of a multicore fiber (MCF) has greatly
improved the communication capacity of a single fiber. In such an MCF-based communication system,
mux/demux devices with broad bandwidth are of great significance. In this work, we design and fabricate a
19-channel mux/demux device based on femtosecond laser direct writing. The fabricated mux/demux device
possesses an average insertion loss of 0.88 dB and intercore crosstalk of no more than −29.1 dB. Moreover,
the fabricated mux/demux device features a broad bandwidth across the C+L band. Such a mux/demux device
enables low-loss 19-core fiber (de)multiplexing over the whole C+L band, showing a convincing potential value
in wavelength-space division multiplexing applications. In addition, a 19-core fiber fan-in/fan-out system is also
established based on a pair of mux/demux devices in this work.
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1 Introduction
Over the last couple of years, the communication capacity of
single-mode fiber (SMF)-based systems has been rapidly
pushed toward its theoretical limit1 due to the explosive growth
in demand for optical communication traffic. Thus, space-
division multiplexing (SDM) has been proposed and demon-
strated to be a promising technology to further increase the
capacity of a single optical fiber.2,3 There are currently two kinds
of fiber-based SDM communication systems. One propagates
orthogonal spatial modes loaded with different signals in the
single core of a multimode fiber4–7 and the other transmits differ-
ent signals in diverse cores of a multicore fiber (MCF).8–14

Remarkably, high communication capacities with long-distance
transmission have been accomplished by applying SDM trans-
mission in MCFs. For instance, 2.15 Pb/s transmission was
demonstrated applying a 22-core homogeneous single-mode
MCF and a wideband optical comb.10 105.1 Tb/s, 14,350-km
transmission was achieved using a 12-core MCF.15

One important component for such an MCF-based SDM sys-
tem is a fan-in/fan-out (FIFO) device with broad bandwidth, low
insertion loss, and low crosstalk, which acts as an SDM mux/
demux device. With the development of MCF-based SDM tech-
nology, several kinds of FIFO devices have been proposed and
fabricated. Generally speaking, they can be divided into three
kinds: traditional free-space FIFO couplers,16,17 fiber-based
FIFO couplers,18–21 and on-chip FIFO couplers.22–28 Traditional
free-space FIFO couplers based on free-space optical devices
have been widely utilized owing to their high efficiencies.
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However, they are too bulky. Fiber-based FIFO couplers can be
divided into two kinds: tapered MCF connectors18,19 and etched
fiber bundles.20,21 Such two kinds of fiber-based couplers feature
low insertion loss, small size, and low crosstalk. Thus, they are
capable of transmitting different signals in different spatial chan-
nels in long-haul MCFs. Compared to these methods, on-chip
FIFO solutions are also preferred because, from an integration
point of view, other functionalities can be integrated with them.
Several kinds of integrated FIFO chips based on different
platforms have been reported, such as on-chip grating coupler
arrays on silicon-on-insulator (SOI) platforms22,23 and silicon
nitride platforms,24 FIFO polymer waveguides,25,26 and ultrafast
laser-inscribed FIFO waveguides based on glass platforms.27,28

Among them, inscribing waveguides in a glass chip is a competi-
tive solution,29–31 possessing the characteristics of low cost and
broad bandwidth. Unfortunately, as the number of channels
increases, the inside of the device will be more crowded, which
will lead to a higher bend loss. A longer length of the device will
provide more space; however, it means a higher path loss. Thus,
a reasonable design of the device is of great significance because
it aims to minimize the sum of path loss and bending loss.
Moreover, a high-performance light-field matching of device
and commercial SMF array also affects the loss.

In this work, we design and fabricate 19-channel FIFO de-
vices based on femtosecond laser direct writing. The insertion
losses of 19 channels are evaluated to be no more than 1.2 dB at
1550 nm with an average value of 0.88 dB. In addition, insertion
losses of specific channels are characterized to be almost the
same over the whole C+L band, proving the broad bandwidth
of this FIFO device. Intercore crosstalk of the FIFO device is
also evaluated to be no more than −29.1 dB. Applying a pair
of FIFO devices and a 1-km 19-core fiber, a 19-core fiber FIFO
system is established. Remarkably, such a femtosecond laser-
inscribed 19-channel FIFO device, which features low insertion
loss, broad bandwidth, and low crosstalk, may be able to pro-
mote applications in different areas, such as long-haul SDM data
transmission,8–14 quantum information processing,32,33 MCF-
based sensing,34,35 and imaging.36,37.

2 Results

2.1 Design and Fabrication of the FIFO Device

Figure 1(a) displays the schematic of the femtosecond laser direct
writing system. The glass sample (20 mm × 50 mm × 1 mm) is

placed on a three-dimensional stage. The femtosecond laser beam
is tailored by a slit and then vertically focused into the sample
through a 50× objective (NA ¼ 0.42). The FIFO device is fab-
ricated along the 20-mm side. Utilizing an LED lighting system
and a visible CCD, the femtosecond laser direct writing process is
monitored in real time. During the fabricating process, the glass
sample is translated using a high precision XYZ air-bearing stage.
The femtosecond laser beam is tailored by a slit so that approx-
imately circular cross sections can be formed on the end facet of
the glass. An approximately circular shape of the FIFO wave-
guide cross section will promote the mode field match between
the FIFO device and 19-core fiber.38 Moreover, through adjusting
the parameters of the femtosecond laser direct writing system,
the size of the approximately circular cross sections is adjusted
so that high-performance light-field matching of the SMF array
and the device can be achieved. As a result, the coupling loss will
also be lower. (More details and parameters of the fabrication pro-
cess can be found in Table S1 in the Supplemental Material.)

For traditional ultrafast laser-inscribed FIFO devices fabri-
cated in quartz glass, they are usually fabricated in the thermal
fabrication regime (e.g., 5.1-MHz ultrafast laser). In such re-
gimes, cumulative effects take place. The low pulse energy
of the applied high-frequency lasers requires a high NA objec-
tive lens to achieve a few-hundred micrometers’ vertical fabri-
cation range. In these regimes, modifications are of a circular
cross section due to the isotropic heat diffusion. In contrast,
we choose a low-frequency (100 kHz) laser to accomplish
the material modification produced by the individual pulses.
The applied low NA objective lens enables the vertical fabrica-
tion range up to a few micrometers. Thus, waveguides inscribed
in low-frequency regimes usually exhibit significant loss and
strong core asymmetry with a large aspect ratio. However,
we apply the slit beam shaping technique to fabricate wave-
guides with a circular cross section and low loss over a large
depth range. In addition, the main parameters of the fabrication
process are scanned, and the comprehensive optimal value is
selected. In this way, we achieve both the ultralow propagation
loss (∼0.1 dB∕cm) and high mode field matching performance
of quartz glass FIFO devices.

The concept of a fabricated 19-channel FIFO device is indi-
cated in Fig. 1(b). A side-by-side 19-channel Gaussian beam
array that outputs from a SMF array is incident into the
FIFO device. As a result, different beams of the beam array
are confined to transmit along different channels in the FIFO

Fig. 1 (a) Schematic of the femtosecond laser direct writing system and (b) concept of the femto-
second laser-inscribed device. BS, beam splitter; DM, dichroic mirror; CCD, charge-coupled de-
vice.
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device. The transmission of different beams in their correspond-
ing channels is, in other words, a process of beam array redis-
tribution in three dimensions. The redistributed beam array
forms a distribution that matches a 19-core fiber. Therefore,
light beams output from a SMF array can be accurately coupled
into diverse cores of a 19-core fiber, as displayed in Fig. 1(b). By
modulating different signals onto different beams transmitting
in the SMF array, such a 19-channel FIFO device can be used
as an SDM multiplexer that connects a commercial SMF array
and a 19-core fiber.

Figure 2(a) shows the designed end facets of the input and
output of the 19-channel FIFO device, while Fig. 2(b) shows the
captured output end facet by applying a microscope. The side-
by-side channel distribution at the input of the FIFO device pos-
sesses a channel spacing of 127 μm to match a commercial SMF
array. The channel distribution at the output end corresponds to
the core distribution of a 19-core fiber so that light beams output
from the FIFO device can be coupled into the 19-core fiber with
high efficiency. To clarify the corresponding relationship be-
tween the input channels and output channels of the FIFO de-
vice, we number the channels of the FIFO device from 1 to 19,
as displayed in Fig. 2(a). Figure 2(c) shows the captured cross
section of the utilized 19-core fiber with size information
marked.

The fundamental principle for fabricating such a 19-channel
FIFO device relies on the direct writing of 19 waveguides in
glass. The 19 waveguides inside the FIFO device get closer
to each other along the track from its input to output, as

indicated in Fig. 1(b). In what follows, we explain the design
of the FIFO device in detail.

First, the design of the input and output channel distribution
of the 19-channel FIFO device is required. The channel spacing
of the input end of FIFO device is set to be 127 μm to match the
distribution of applied SMF array. The channel distribution of
the output end of the FIFO device is required to match the core
distribution of the applied 19-core fiber. Figure 2(c) shows the
captured cross section of the applied 19-core fiber, which pos-
sesses a 9-μm core diameter and a 125.32-mm cladding radius.
The 19 cores can be divided into three types of cores located in
three concentric circles: that is, one core in the middle of fiber,
six cores in the second circle, and 12 cores in the third circle. A
42.655-μm spacing exists between adjacent cores in the second
circle, while a 44.16-μm spacing exists between adjacent cores
in the third circle. In addition, a 42.655-μm spacing exists be-
tween the middle core and cores in the second circle. An
85.31-μm spacing exists between the middle core and cores
in the third circle.

After finishing the design of the input and output channel
distributions of the 19-channel FIFO device, tracks of the 19
waveguides inside the FIFO device should be determined, with
the principle of independent transmission. Ultraviolet (UV) op-
tical quartz glass with a size of 20 mm × 50 mm × 1 mm is uti-
lized as the substrate material. Its 20-mm side is chosen as the
waveguide length. The channel number of input end facet and
output end facet is shown in Fig. 2(a). The channel 10 here is set
as a straight waveguide, while other channels are designed to be

Fig. 2 (a) Design of the input end facet and output end facet of the FIFO device; (b) captured
output end facet of the FIFO device; (c) captured cross section of applied 19-core fiber; and (d) de-
sign of the 2D track of the waveguide.
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bending waveguides. Tracks of 18 bending channels should be
designed obeying the following rules: (i) confirm the plane on
which the track is located. Assuming that input and output beam
of the FIFO device propagates along horizonal lines, as shown
in Fig. 2(d), a specific plane is determined that contains both the
input line and output line; (ii) plotting the following 2D track on
this specific plane:

y ¼ 6h
L5

x5 − 15h
L4

x4 þ 10h
L3

x3; (1)

where L denotes the horizonal length of the track, h corresponds
to the vertical length of the track, and x denotes the horizonal
coordinate. Then the radius of curvature of the waveguide can be
expressed as

R ¼

�������
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60hx
L3

�
2 x2
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; (2)

where R denotes the radius of curvature of the waveguide. (iii)
After plotting such a 2D track [like the orange track in
Fig. 2(d)], one can obtain a three-dimensional track of the wave-
guide by considering the size of the waveguide. Thus, tracks of
19 channels are determined. To avoid shadow effects, such a
fabrication sequence is utilized: channel 12→ channel 13→
channel 14→ channel 17→ channel 7→ channel 6→ channel
3→ channel 8→ channel 5→ channel 11→ channel 15→ chan-
nel 10→ channel 16→ channel 4→ channel 18→ channel 19→
channel 2→ channel 1.

2.2 Experimental Setup of 19-Channel FIFO System

To achieve the characterization of the 19-channel FIFO device,
we use a pair of 19-channel FIFO devices to establish a 19-chan-
nel FIFO system. The schematic of the 19-channel FIFO system
is shown in Fig. 3(a). A C+L band tunable laser is connected to

an optical coupler (OC) so that light beam output from the
laser is split into 19 beams transmitting in an SMF array.
The 19-channel fiber-guided beams then output from the SMF
array and enter the FIFO device. During the transmission in the
FIFO device, the 19-channel beam array is redistributed to form
a distribution that matches the 19-core fiber. Then the 19-
channel beam array is coupled into a 1-km 19-core fiber. The
applied 19-core fiber possesses a measured transmission loss
of 0.26 dB/km. To demultiplex the 19-channel beams output
from the 1-km 19-core fiber, another FIFO device is reversely
inserted into the experimental setup, as shown in Fig. 3(a).
Finally, the demultiplexed side-by-side 19-channel beams that
output from the FIFO device are incident into another SMF
array, thereby demultiplexing the 19-channel beams into 19
different SMF channels.

In the experiment, all the coupling processes are monitored in
real time by a visible CCD. To accomplish accurate coupling
alignment, the two SMF arrays and the 1-km 19-core fiber
are placed on six-axes stages, which enable precise control
of three-dimensional angles and displacements. In addition,
two rotational fiber holders are utilized to rotate the two ports
of the 19-core fiber to finish the channel distribution match be-
tween the 19-core fiber and the FIFO devices. Once the 19-
channel FIFO system is successfully established, all the devices
(i.e., the two SMF arrays, the two FIFO devices, and the 1-km
19-core fiber) can be integrated by applying a UV glue so that
the applied six-axes stages, rotational fiber holders, and moni-
toring CCD are freed.

2.3 Characterization of the FIFO Device

To obtain the performance of the fabricated 19-channel FIFO
device, a comprehensive characterization is carried out, includ-
ing capturing the output light field, measuring the insertion loss,
characterizing the bandwidth, and evaluating the crosstalk of the
19-channel FIFO device.

The intensity profile of the output light field of the 19-
channel FIFO device is displayed in Fig. 4(a). It is captured after

Fig. 3 (a) Experimental setup of the 19-channel FIFO system based on a pair of FIFO devices;
(b) 1-km 19-core fiber; (c) 19-channel FIFO device; (d) SMF array. OC, optical coupler.
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the FIFO device output by using a 50× objective lens and a
1550 nm CCD. Considering that all the 19 channels possess
the same input power, the output intensities of 19 different
channels are similar, as illustrated in Fig. 4(a). Such a uniform
intensity profile proves that accurate coupling is achieved.
The intensity profile of the 19-channel beam array obeys a
distribution that matches the 19-core fiber, thereby coupling
the 19-channel beams into a 1-km 19-core fiber. As a result, the
captured intensity profile is indicated in Fig. 4(b). In Fig. 4(b),
relatively obvious intensity disparity exists between different
channels. This is mainly due to the imperfect coupling process.
Higher-precision coupling devices (e.g., better rotational fiber
holders, six-axes stages) may be a potential solution to this
power disparity problem.

The insertion losses of a FIFO device result in lower received
power of an SDM communication system, thereby affecting the
bit error rate (BER) performance of the SDM communication
system. Here, we evaluate the insertion losses of 19 different
channels of the FIFO device at 1550 nm. Light beams output
from the FIFO device are coupled into a short SMF for insertion
loss characterization. During the loss characterizations, the input
power only exists in the channel that is under test. First, the in-
put intensity of a specific channel is measured by recording its
power at the output of the OC using a fiber power meter. Then,
the output intensity of this channel is measured at the output of
the SMF by applying the same fiber power meter. Finally, the

insertion losses of the 19 different channels are calculated by
means of subtracting the input intensities from their output
intensities. The measured insertion losses of 19 different chan-
nels are evaluated to be no more than 1.2 dB at 1550 nm, which
can be found in Fig. 5(a). It is worth mentioning that the mea-
sured insertion losses contain coupling losses and linear propa-
gation loss of the FIFO waveguide. Thus, a coupling loss about
0.3 dB/facet and a linear propagation loss of about 0.1 dB/cm
are evaluated for channel 10 at 1550 nm. Central channels fea-
ture lower insertion losses due to their lower bending losses and
shorter paths. Compared to central channels, the low increase of
channel path length of the farthest channel will not affect the
insertion loss as much, due to the linear propagation loss of
∼0.1 dB∕cm. That is, the bending loss is the main reason that
causes the higher insertion loss of the farthest channel.

The wavelength-division multiplexing (WDM) technology is
an efficient approach to improve the optical communication
capacity. Hence, the bandwidth of an SDM FIFO device is re-
quired to be large enough so that the SDM technology can be
used together with WDM to further increase the capacity of the
optical network. Fortunately, the fabricated 19-channel FIFO
device on a glass chip has the advantage of broad bandwidth.
Therefore, we measure the insertion losses of three different
channels (central channel, channel 10; farther channel, channel
14; the farthest channel, channel 19) over the whole C+L band
to prove it. Insertion losses of these three different channels
are evaluated at diverse wavelengths from 1528 to 1625 nm with
a measurement interval of 1 nm, as illustrated in Fig. 5(b).
Insertion losses at different wavelengths almost retain the same
value, demonstrating the C+L bandwidth of the fabricated
FIFO device. Thus, the femtosecond laser-inscribed 19-channel
FIFO device can be utilized as a (de)multiplexer in wavelength-
space division multiplexing (WSDM) applications.

The interchannel crosstalk of an SDM system describes how
much power in the input channel couples to other channels. In
addition to insertion losses, the interchannel crosstalk is another
factor that determines the performance of an SDM communica-
tion system. The interchannel crosstalk can be evaluated by
measuring the output power of the input channel and the output
power of other channels. Here, we characterize the intercore
crosstalk of the 19-channel FIFO device (for details about
the crosstalk characterization, refer to Fig. S1, Fig. S2, and

Fig. 4 Intensity profiles of the output light fields of (a) 19-channel
FIFO device and (b) 1-km 19-core fiber.

Fig. 5 (a) Measured insertion losses of 19 different channels of the FIFO device at 1550 nm and
(b) evaluated insertion losses of channels 10, 14, and 19 from 1528 to 1625 nm.
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Table S2 in the Supplemental Material). For a specific channel,
we choose the biggest crosstalk between it and other channels as
the crosstalk of this channel, as shown in Fig. 6. All the
channels possess crosstalk of no more than −29.1 dB. Such
a low crosstalk enables high-speed signal transmission in a
19-core fiber.

3 Conclusion and Discussion
We designed and fabricated a 19-channel FIFO waveguide
based on femtosecond laser direct writing. The insertion losses
of 19 channels are evaluated to be no more than 1.2 dB at
1550 nm, with an average value of 0.88 dB. Intercore crosstalk
of the FIFO device is also evaluated to be no more than
−29.1 dB. In addition, the broad C+L bandwidth of the
19-channel waveguide is characterized and demonstrated by
measuring the insertion losses of different channels at diverse
wavelengths. Applying a pair of waveguides and 1-km 19-core
fiber, a 19-core fiber FIFO system is established, showing the
practical value of the fabricated FIFO device.

Compared to free-space FIFO solutions16,17 and fiber-based
solutions,18,19 our FIFO mux/demux devices have the advantages
of small size and low cost. In contrast to on-chip FIFO solutions
based on other material platforms,22–26 our FIFO mux/demux de-
vices based on glass combines the advantages of low insertion
loss and broad bandwidth. Even compared to other ultrafast
laser inscribing methods,27,28 our FIFO devices achieve the low-
est propagation loss of ∼0.1 dB∕cm. Such a femtosecond laser-
inscribed 19-channel FIFO device may pave the way for many
applications. For instance, the FIFO device can be applied as a
(de)multiplexer in large-capacity long-haul WSDM transmis-
sion based on MCF8–13 due to its broad bandwidth and low in-
terchannel crosstalk. In addition, multiport beam splitters can be
achieved by a specially designed FIFO device, which is a
cornerstone device for high-dimensional quantum information
tasks.39 Such a FIFO device is also capable of establishing
integrated FIFO systems, so it may be helpful to fabricate inte-
grated MCF-based sensors and endoscopes. In addition, a pho-
tonic lantern can also be fabricated based on femtosecond laser
direct writing,40–45 which is desirable for SDM applications
based on higher-order modes.
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